Spatial working memory deficits in GluA1 AMPA receptor subunit knockout mice reflect impaired short-term habituation: Evidence for Wagner's dual-process memory model
نویسندگان
چکیده
Genetically modified mice, lacking the GluA1 AMPA receptor subunit, are impaired on spatial working memory tasks, but display normal acquisition of spatial reference memory tasks. One explanation for this dissociation is that working memory, win-shift performance engages a GluA1-dependent, non-associative, short-term memory process through which animals choose relatively novel arms in preference to relatively familiar options. In contrast, spatial reference memory, as exemplified by the Morris water maze task, reflects a GluA1-independent, associative, long-term memory mechanism. These results can be accommodated by Wagner's dual-process model of memory in which short and long-term memory mechanisms exist in parallel and, under certain circumstances, compete with each other. According to our analysis, GluA1(-/-) mice lack short-term memory for recently experienced spatial stimuli. One consequence of this impairment is that these stimuli should remain surprising and thus be better able to form long-term associative representations. Consistent with this hypothesis, we have recently shown that long-term spatial memory for recently visited locations is enhanced in GluA1(-/-) mice, despite impairments in hippocampal synaptic plasticity. Taken together, these results support a role for GluA1-containing AMPA receptors in short-term habituation, and in modulating the intensity or perceived salience of stimuli.
منابع مشابه
The role of habituation in hippocampus-dependent spatial working memory tasks: Evidence from GluA1 AMPA receptor subunit knockout mice
Spatial alternation, win-shift behavior has been claimed to be a test of working memory in rodents that requires active maintenance of relevant, trial-specific information. In this review, we describe work with GluA1 AMPA receptor subunit knockout mice that show impaired spatial alternation, but normal spatial reference memory. Due to their selective impairment on spatial alternation, GluA1 kno...
متن کاملDissociations within short-term memory in GluA1 AMPA receptor subunit knockout mice
GluA1 AMPA receptor subunit knockout mice display a selective impairment on short-term recognition memory tasks. In this study we tested whether GluA1 is important for short-term memory that is necessary for bridging the discontiguity between cues in trace conditioning. GluA1 knockout mice were not impaired at using short-term memory traces of T-maze floor inserts, made of different materials, ...
متن کاملDeletion of the GluA1 AMPA receptor subunit alters the expression of short-term memory.
Deletion of the GluA1 AMPA receptor subunit selectively impairs short-term memory for spatial locations. We further investigated this deficit by examining memory for discrete nonspatial visual stimuli in an operant chamber. Unconditioned suppression of magazine responding to visual stimuli was measured in wild-type and GluA1 knockout mice. Wild-type mice showed less suppression to a stimulus th...
متن کاملMultiple memory mechanisms? The long and the short of it.
Synaptic plasticity is known to be intrinsically linked to cytoskeletal remodelling. In a new study published in this issue of The EMBO Journal, Rust et al have therefore generated and analysed a forebrain-specific mouse knockout of the actin-severing factor n-cofilin. Intriguingly, these mice exhibit a particular form of learning impairment-intact working memory but impaired spatial reference ...
متن کاملActivity pattern-dependent long-term potentiation in neocortex and hippocampus of GluA1 (GluR-A) subunit-deficient mice.
The AMPA receptor subunit GluA1 (GluR-A) has been implicated to be critically involved in the expression of long-term potentiation (LTP) and memory formation. Mice lacking this subunit possess a profound spatial working memory deficit. We investigated the influence of the GluA1 subunit on the expression of LTP in pyramidal neurons of the hippocampus CA1 region and somatosensory cortex layer 2/3...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 48 شماره
صفحات -
تاریخ انتشار 2010